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Abstract—A method i s  developed to  use a
single  set  of  two-dimensional numerical
optimizations of   inductor winding shapes to
s imply calculate the optimal winding
configuration for any design on the same core
without repeating the computationally intensive
numerical optimization.  For transformer
windings, the results are consistent with previous
one-dimensional optimizations,  but for inductor
windings, analysis of  two-dimensional effects
allows significant performance improvements.

I. INTRODUCTION

In an inductor winding, the core, and particularly the air
gap, strongly affect the field in the winding area, and thus
determine proximity-effect losses in the winding.
Conventional one-dimensional analyses of proximity-effect
losses and the associated design methodologies developed for
transformers [1-10] do not account for the true field of a
gapped inductor, and do not allow accurate prediction of
inductor ac resistance [11].  High-frequency winding losses are
particularly important in applications with high ac currents,
such discontinuous-mode converters, popular for high-power-
factor converters, and resonant soft-switching converters.
Low ac resistance is essential for efficient operation and
thermal management.

In [12], numerical computation and optimization
methods accounting for two-dimensional field effects were
developed, and the resulting winding shapes were shown to
provide significant reductions in losses, allowing the
performance of a lumped-gap inductor to not only equal, but

surpass the performance of a distributed-gap [13, 14] design.
Thus, higher performance is achieved while avoiding the high
cost of special low-permeability distributed-gap materials, or
of complex quasi-distributed-gap construction [15-21].  

The method in [12] requires a numerical optimization for
each design variation.  In this paper, we show that, for a
particular core shape, complete information may be obtained
with a limited set of optimizations.  This information may
then be used to develop an analytical solution for minimum-
loss winding designs for any inductor built on the same core.
This makes it simple to design a low-loss inductor on a given
core shape, for any set of electrical requirements.  It is also is
an important step toward optimizing core designs to take
advantage of the possibilities afforded by optimized winding
shapes.

II. NUMERICALLY COMPUTED OPTIMUM WINDING

SHAPES

Our objective is to find optimized winding shapes for a
fixed core and gap geometry and a fixed number of turns.  In

Fig. 1.  Two-dimensional inductor with optimized
winding shape.
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Fig. 2.  Optimal winding shapes computed for a
10 mm x 10 mm winding window with a gap at the
center left and 0.1 mm litz-wire strand diameter,
for four frequencies.  The area near the gap,
bordered by the appropriate line for a given
frequency, is empty of conductors.  Cross-
sectional area used by each solution is indicated.
For the 60 kHz (58.6 mm2) solution, additional
empty areas appear at the top and bottom right.
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[12], the use of litz wire is addressed, and a fixed strand
diameter is assumed.  The optimization problem is the choice
of the number of strands in the litz bundle (assumed equal for
each turn), and the positioning of the resulting bundles within
the window.  This means finding a region of the winding
window, with area equal to the area of the wire (adjusted by a
packing factor) that gives minimum total loss.  The
considerations involve include the tradeoff between lower ac
loss with less copper and lower dc resistance with more
copper; the positioning of the wire in regions of low field to
minimize proximity-effect loss; and the effect of that
position, in turn, on the field in the window area.

A sketch of the type of design that results from the
optimization in [12] is shown in Fig. 1.  Detailed results for
an example design (a square winding window, 10 mm x 10
mm, and 0.1 mm strand diameter)  are shown in Figs. 2, 3
and 4.

III. GENERALIZED ANALYSIS OF RESULTS

We would like to be able to apply the results of this
numerical optimization to any winding design on the same
core, even though the number of turns, the choice of whether
to use litz or single-strand wire, the frequency and waveform
of the current, and the strand diameter (if litz wire is to be
used) may be different from those assumed in the original
numerical optimization.  

For cylindrical conductors with diameter, d, small
compared to a skin depth, the proximity-effect loss in a

sinusoidal ac field of amplitude B, perpendicular to the axis of
the wire, at a frequency ω is [22],

Ppe =
π ⋅ ω ⋅ B 2 ⋅ l ⋅ d4

128 ⋅ ρ c

,                 (1)

where l is the length of the conductor and ρc is the resistivity
of the conductor.  For nonsinusoidal flux waveforms,
resulting from nonsinusoidal currents, (1) and the analysis
below apply directly if an effective frequency, ω eff [23], is
substituted for ω.  Calculation of the effective frequency is
explained in the Appendix.

For the complete winding,

Ppe =
πω2 Fp

128ρ c

ld2 B
A1

∫
2

⋅ dA                   (2)

where A1 is the portion of the window that is actually used
and Fp  is the winding packing factor for that region.  The
proximity effect loss is proportional to the area times the

average value of the square of the flux density, A1 | B |2 .  The
dc loss, however, is inversely proportional to A1.

Pdc =
4Itotal

2 ρcl

π ⋅ Fp A1

                             (3)

Thus, the relationship between A1 and | B |2  determines the
proximity effect vs. dc loss tradeoff.  This relationship
depends only on the core geometry and winding shape, and
not on the particulars of winding design, if we normalize

| B |2  to the total winding current NI = Itotal .  We define this
normalized function as

g( A1 ) =
B 2

Itotal
2 .                           (4)
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Fig. 3.  Optimal winding shapes as in Fig. 2, but
for higher frequencies.  Areas empty of wire are
bordered by the lines shown and include a
“mushroom” shape based at the gap, bordered by
the indicated line, and the wedges at the top and
bottom right.

 120 kHz (32.4 mm2 )
 200 kHz (21.35mm2 )

 500 kHz (9.75 mm2 )
120 kHz

120 kHz

200 kHz

200 kHz

500 kHz

500 kHz

Fig. 4. Optimal winding shapes as in Figs. 2 and
3, but for higher frequencies.  Conductors fill the
indicated areas along the top and bottom walls
and near the right wall.



3

This function may be found from one set of numerical
optimization data, such as that shown in Fig. 2-4, and is
shown in Fig. 5.  We will show that this data can then be
used to derive expressions for the optimum winding
configuration given several different possible sets of
constraints.

Case 1: Fixed Strand Diameter
In this case, the winding is constructed of litz wire.  The

diameter of the individual strands is fixed, and we vary the
number of strands to trade off ac and dc losses.  This
corresponds to the analysis in [12].  For any chosen number
of strands, the overall winding area is determined, and the
configuration must be selected to minimize proximity effect.
For any given area, the optimum choice will be a
configuration such as one of those shown in Figs. 2-4,
regardless of whether the parameters are those chosen for
Figs. 2-4.  Our task is to chose which one; that is, to chose
the area A1.

To chose A1 we start with total power loss (the sum of
(3) and (2)), and set its derivative with respect to A1 equal to
zero.  We find an implicit expression for A1,

A1 =
16 2

π
ρ c

ωFp d

 

 
 

 

 
 

1

g(A1 ) +g'( A1 ) ⋅ A1

      (5)

where g'() is the derivative of the function g() with respect to
its argument A1.  The function  is determined by the core
geometry only, not by the particular design parameters, which
may be lumped in a constant

ζ =
ρc

ωFpd
                                (6)

Equation (5) then becomes

A1 =
16 2

π
ζ

1

g(A1 ) +g' ( A1 )⋅ A1

                 (7)

which implicitly describes a relationship between the
parameter ζ and the area A1, plotted in Fig. 6.

Given the information in Fig. 6, one can find an optimal
design for any set of parameters with this particular core by
calculating ζ from (6), finding A1 from Fig. 6, and then
finding the optimal shape corresponding to that value of A1

from Figs. 2-4.  Thus, we have a simple method that extends
the numerical optimization results to any design on the same
core, without the need to repeat the computationally intensive
optimization.

Case 2: Fixed Strand Number  
This case applies to litz wire in which the number of

strands is fixed, and we want to find the optimum strand
diameter, or to single strand wire (which is simply a
particular case of fixing the strand number—fixing it equal to
one).  In this case, the same approach leads to:

 A1 =
8

π
ρ cnN

ω2Fp
3

 

 
  

 

 
  

1/3

2g(A1) + g' (A1 ) ⋅A1( )−1/3 .       (8)

Again, all the factors describing a particular design may be
lumped into one parameter (named ξ for this case)
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Fig. 6.  Relationship between the parameter ζ and the
area A1  for optimal designs with fixed strand diameter.
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Fig. 5.  Normalized average square of magnetic field,

g(A) = | B |2 /I2, as a function of winding area for
configurations based on three different design
approaches.  The solid line represents a rectangular
winding with a distributed gap.  The ‘x’s are for designs
using a rectangular winding and a lumped gap, with the
winding spaced as far from the gap as possible.  The
circles represent the optimal designs computed
numerically.
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ξ =
ρcnN

ω2 Fp
3

 

 
  

 

 
  

1/3

                         (9)

such that (8) becomes

A1 =
8

π
ξ 2g(A1 ) +g' ( A1 )⋅ A1( )− 1/3                   (10)

which implicitly describes a relationship between ξ and A1,
plotted in Fig. 7 for the example geometry in Figs. 2-4.
This plot provides the information needed to chose an optimal
design for this core geometry, given a fixed number of
strands, just as Fig. 6 provides the information needed to
chose an optimal design given a fixed strand diameter.

IV. DISCUSSION

Although the results in Section III provide the information
needed to complete the design, additional ways of looking at
the information lend more insight.  In particular, a common
way of discussing optimal winding designs is in terms of the

optimal ac resistance factor Fr =
Rac

Rdc

.  The analysis in

Section III can be used to derive expressions for optimal ac
resistance factor [24]

Fr = 1+
g(A1 )

g(A1 ) + g' ( A1 ) ⋅ A1

                      (11)

for fixed strand diameter (case 1) and

Fr = 1+
g(A1 )

2 ⋅g(A1) + g' ( A1 ) ⋅A1

                   (12)

for fixed strand number (case 2).  These results can be related
to previous results in the literature if we note that the standard
one-dimensional analysis used for transformer windings
corresponds to a value of g() independent of the value of A1,

such that g'() = 0.  These expressions ((11) and (12)) then
reduce to Fr = 2 and Fr = 1.5.  The latter is a familiar result
[3-5, 22] for fixed strand number (usually for single-strand
windings), and Fr = 2 is also the correct result for transformer
windings with litz wire and a fixed strand diameter [23].
Thus, the new results represent a generalization of previous
results.

The method developed here could be used in many ways.
One use would be in magnetic component design, using
standard cores.  For a given core, the designer would perform
a series of numerical optimizations to generate data like that
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Fig. 7.  Relationship between the parameter ξ and the
area A1 for optimal designs with number of strands
fixed.
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Fig. 8.  Optimal ac resistance factor as a function of the
fraction of the winding window filled, for two sets of
constraints:
a) Case 1, fixed strand diameter, and
b) Case 2, fixed number of strands.
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shown in Fig. 2-4.  Then this data could be used to more
quickly try a series of iterations for one design, or could used
for different designs on the same core.  A more attractive
scenario would be for core manufacturers to publish the
curves shown here for their core designs.  Then any designer
would be able to optimize designs without needing access to
the specialized software developed in [12], and without
needing to re-run computationally intensive numerical
optimizations.

The litz-wire scenarios analyzed here are somewhat
artificial, in that they require fixing either strand number or
strand diameter.  In practice, both variables may be adjusted,
and considering both in an optimization may result in
substantial loss and cost reduction, as demonstrated in [25] for
transformer windings.  Further work is needed to address this
less-constrained optimization for inductors with optimized
winding shapes.

The optimization in [12] upon which this work is based
uses two-dimensional analysis.  The approach developed here
for generalizing the results would apply equally well to
optimizations based on full three-dimensional or
axisymmetric analysis.  This makes three-dimensional
analysis considerably more attractive, because even if it was
not computationally efficient, once the analysis was done for
a particular core shape, the approach here could allow it to be
used in any design without the need for additional numerically
intensive computation.  

VI. CONCLUSION

Starting from a set of numerical optimizations for
winding shape in a gapped inductor, we develop an analysis
approach that allows finding optimal shapes for any design
using the same core.  Finding the optimal winding shape is
then a matter of using simple calculations and graphical
results.  The results are shown to be consistent with previous
results for transformer windings.  The combination of a
simple design approach and low losses with high ac current is
promising for enabling wider application of soft-switching
converter circuits that require high-ac-current inductors.

APPENDIX:  Non-Sinusoidal Current Waveforms

In [23] it is shown that using Fourier analysis to
represent a nonsinusoidal waveform and summing the
losses for each harmonic is equivalent to using an effective
frequency)

as long as the skin depth for the highest important
frequency is not small compared to the strand diameter.

Once the effective frequency of a pure ac waveform has
been calculated, the effective frequency with a dc component
can be calculated by a re-application of (13):

(14)

Finding Fourier coefficients and then summing the
infinite series in (1) can be tedious.  A shortcut, suggested
but not fleshed out in [5], can be derived by noting that

(15)

so that

(16)

A symmetrical triangular current waveform with zero
dc component results in an effective frequency of 1.103ω 1

where ω 1  is the fundamental frequency. Although the series
in (1) does not converge for a square wave, and (4) is
undefined, practical waveforms in inductors are never
perfectly square.  A square wave with finite-slope edges
leads to a finite value of  ω eff, which can be found from (4)
to be

    ωeff = ω1

π
6

∆ 3 − 4∆( )              

where ∆  is the transition time as a fraction of the total
period.  For ∆  = 0.5 the waveform becomes triangular and
(5) gives the same value of ωeff  as calculated above. This

expression (5) is valid as long as there is not significant
harmonic current for which the wire diameter is large
compared to a skin depth.  Based on the rule thumb that the
highest important harmonic number is given by N = 0.35∆
[26], a rough check on this would be to calculate skin depth
for a maximum frequency ωmax = 0.35ω1

∆
,  and compare this

to the wire diameter.  

ωeff =
RMS

d

dt
   

I t( ) 
 
 

Itot ,rms

ωeff =  
∑ j =0

∞ I j
2ω j

2

∑ j = 0
oo I j

2      

ωeff =
Iac

2 ωeff, ac
2

Idc
2 + Iac

2

(13)

(17)

∑
j = o

∞
I j

2ω j
2 = RMS

d

dt
I t( )   

 
 
 

 
  

 
  

2
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