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Abstract—An extension to the Steinmetz equation is proposed, to en-
able estimation of hysteresis losses in magnetic core materials with nonsi-
nusoidal flux waveforms. The new formulation is shown to avoid anoma-
lies present in previous modified-Steinmetz-equation calculations of loss
with nonsinusoidal waveforms. Comparison with experimental measure-
ments in MnZn ferrite shows improved accuracy. The result may be op-
tionally formulated in terms of an effective frequency and an effective
amplitude, and options for defining these are discussed.

I. I NTRODUCTION

FOR the purpose of designing magnetic power devices, in-
cluding electric machines, transformers, inductors, and

other static reactors, loss in the magnetic material is often pre-
dicted using a power law equation [1], [2]

Pv(t) = kfαB̂β (1)

whereB̂ is the peak flux amplitude,Pv(t) is the time-average
power loss per unit volume, andf is the frequency of sinu-
soidal excitation. A similar equation, but without the fre-
quency dependence, was proposed by Steinmetz in 1892 [3],
and so (1) is often referred to as the Steinmetz equation. Un-
fortunately, the Steinmetz equation, as well as the data pro-
vided by manufacturers of magnetic materials, is based only
on sinusoidal excitation, whereas switching power converters
and, increasingly, electric machines, can have very different
waveforms. These nonsinusoidal waveforms result in differ-
ent losses [4], [5]. DC bias can also significantly affect loss
[6], [7], [8]. A better method of determining loss, accurate for
a wider variety of waveforms, is needed. Our work is moti-
vated primarily by applications to MnZn power ferrite materi-
als. However, the results may be useful for other materials as
well.

A standard method of analyzing core loss in more detail
is to break it up into static hysteresis lossPh, classical eddy
current lossPcl, and “excess loss”Pexc [9]

Pv(t) = Ph + Pcl + Pexc. (2)

The classical loss is a linear phenomenon, and depends on the
square of the flux density. It can be directly calculated from
geometry and bulk resistivity in ferrites, and, for power fer-
rites, it is typically small in the regions of interest. Static hys-
teresis loss is proportional to frequency, but typical values of
β in (1) are around 1.5 to 2 in MnZn power ferrite materi-
als [1]. This indicates that the bulk of the important losses in
ferrite materials are, by definition, excess losses, those which
are least well understood. Some important progress has been
made in modeling excess losses in laminated alloys, based on
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considering eddy currents resulting from domain wall motion
[10], [9]. The results for sinusoidal waveforms can be ex-
pressed as

Pexc = C(B̂f)γ (3)

whereC andγ are constants andγ = 2 or γ = 3
2 under dif-

ferent assumptions. The model can also be used to predict
loss with nonsinusoidal waveforms, withγ = 3

2
giving good

results for laminations and amorphous ribbon material [11],
even though [11] improperly applies Fourier series to a non-
linear system.

Similar or equivalent approaches to modeling losses in fer-
rites, with γ = 2 (implicitly or explicitly) have sometimes
been used [12], [13], [14]. It is also possible to use similar
models that use linear dynamics and so have dynamic loss that
depends on the square of the flux density, but that have more
complex frequency dependence [15], [16], [17]. We have not
used any of these approaches, for both practical and theoret-
ical reasons. Firstly, in regions of high frequency and high
flux density, where losses in power ferrites are primarily ex-
cess losses, the values ofα andβ in (1) are often different
from either value proposed forγ, andα is smaller thanβ, by
as much as a factor of two [1]. The complex frequency depen-
dence in [16], [17] can help, but the results are still restricted
to having the dynamic portion of the loss depend onB̂2, which
may not agree with experimental data. This is not surprising,
since the excess loss mechanisms in ferrite may be more di-
rectly related to hysteresis [18], [19] than is assumed in the
models described in [10], [9]. It is not yet clear how to most
accurately model the excess loss mechanism in ferrite. More
detailed modeling of the dynamics of the hysteresis mecha-
nism show promise to give the most accurate results [20].

However, all of the approaches using loss separation also
have a practical disadvantage: they require extensive measure-
ment and parameter extraction with a given material before
they become useful. For practical design work, it would be
preferable to be able to use manufacturer’s data which is typi-
cally provided either in terms of coefficients for the Steinmetz
equation, or in plots of loss for sinusoidal excitation, from
which the coefficients of the Steinmetz equation can easily be
extracted.

In [4], [5], [21], a modified Steinmetz equation (MSE) is de-
veloped to estimate loss with nonsinusoidal waveforms. The
MSE appears to be what we are seeking, in that it requires no
material characterization beyond the coefficients in the Stein-
metz equation. It uses a combination of an effective frequency
fe and a repetition rate frequencyfr . The analysis is moti-
vated by the idea that loss due to domain wall motion should
depend ondB/dt. The MSE provides a good fit to experi-
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mental measurements of core loss with waveforms that deviate
significantly from sinusoidal shapes in both ferrites and lami-
nated alloys, without any additional parameter extraction [5],
[21]. Thus, this is the previous work that has best achieved our
objectives, and it is discussed in more detail in Section I-A.

In this paper, we refine the hypothesis of how loss depends
on (dB/dt), in order to overcome anomalies in the behavior
of the loss predicted by the MSE in [4], [5], [21]. The new
hypothesis leads to a formula for calculating loss in the gen-
eral case, which we term the generalized Steinmetz equation
(GSE). The Steinmetz equation is shown to be a special case
of the GSE. The GSE is also shown to avoid the anomalies
of the MSE. A further benefit of the GSE is that it produces
dc-bias sensitivity without the need to include additional mea-
surements or curve-fitting functions for that purpose.

The GSE can be used directly, or can be used to generate an
“equivalent frequency” and an “equivalent amplitude” that can
be applied in the Steinmetz equation. These two parameters
may be chosen in various ways if the only constraint is that
the Steinmetz equation give the same result as the GSE. Thus,
we need to introduce additional criteria. Appropriate criteria
are discussed, and possible choices for effective frequency and
effective amplitude are evaluated in Section IV.

A. The MSE

Based on physical understanding that loss depends on
dB/dt, [5] averagesdB/dt over a flux excursion to obtain〈

dB

dt

〉
B

=
1

∆B

∫ T

0

(
dB

dt

)2

dt (4)

where∆B is the peak-to-peak flux amplitude andT is the
period of the flux waveform. From this, an “equivalent fre-
quency” is defined as

feq =
2

∆B2π2

∫ T

0

(
dB

dt

)2

dt (5)

The loss is then estimated with the modified Steinmetz equa-
tion (MSE):

P v = kfα−1
eq B̂βfr (6)

whereB̂ is the peak flux amplitude,P v is the time-average
power loss per unit volume andfr = 1/T is the repetition
frequency [5].

One disadvantage of this formulation is that, although the
dependence of loss ondB/dt is included, the manner in which
it is included is not specifically matched to the frequency de-
pendence of the Steinmetz equation. Thus, it is not clear from
the derivation of the MSE that it will behave consistently with
the simple Steinmetz equation (1). In fact, it does not. For
example, consider a flux waveform consisting two sinusoidal
components, at a frequencyω0 = 2πf0 and at an integer mul-
tiple of that frequencymω0

B(t) = A [(1− c) sinω0t+ c sinmω0t] . (7)

As the constantc is varied from zero to one, the core losses
would be expected to gradually increase up to a factormα

times the original losses. However, the MSE shows different
behavior in this case.

The first surprise is that when we calculatefeq (5) with c
approaching one, the result ism2f0, not the expectedmf0 .
However, despite this apparent overestimate of equivalent fre-
quency, the power loss is typically underestimated: Asc ap-
proaches one, the MSE predicts loss approachingm2α−2.
Thus, the MSE underestimates by a factor ofmα−2 the loss
with a flux waveform comprising anmth harmonic plus a
negligible fundamental component. For a typical value of
α = 1.5, this error is a factor of1/

√
m, or 0.58 for a third

harmonic. We see that ifα = 2, the error is zero. Thus, the
MSE implicitly assumes loss proportional tof2, while at the
same time assuming loss proportional tofα. Given this con-
flict, it is not surprising that some anomalies arise.

The region ofc near one might seem to be only of academic
interest, since many waveforms have harmonics that are small
compared to the fundamental. However, the space of possi-
ble waveforms is very large, and it is impossible to explore
them all, so it is worth paying attention to an anomaly that
appears at one of the small subset of points that we have ex-
plored, and where we know what to expect. In addition, in
multi-phase interleaved power converters with coupled mag-
netics (e.g., [22]), such waveforms can arise, and it is in this
type of application, with waveforms that deviate dramatically
from sinusoids, that a more general loss calculation method is
most needed.

Beyond the problematic region where c is approaching one,
at c = 1, there are at least two possible interpretations, be-
cause the period used for the integral in (5) and forfr in (6)
is not uniquely defined. Considering the waveform as a pure
sinusoid at frequencymf0 yields different results from con-
sidering it as a pure mth harmonic of frequencyf0. Neither
choice is fully satisfactory. Using the latter interpretation re-
sults in a sudden jump in losses asc increases from1 − ε to
1, whereas using the former interpretation results in different
results from the Steinmetz equation for what is in fact a pure
sinusoid, and it leaves open the question of whether any given
pure sinusoid should be considered a harmonic of some lower
frequency. Thus, in addition to the substantial underestimate
of loss with small fundamentals as described above, the MSE
has an undesirable dependence on what is chosen as the nom-
inal fundamental period.

Another difficulty with the MSE is the treatment of wave-
forms with multiple peaks, such as those shown in Fig. 7, in
which peak-to-peak amplitude is not adequately descriptive.
As discussed in [4], it is possible to break up the waveform
into multiple pieces, treating each separately. Although that
approach appears to be effective, it would be more desirable
to be able to directly calculate loss from the waveform.
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II. THE GSE: HYPOTHESIS ANDCONSISTENCY WITH

STEINMETZ EQUATION

A fairly general hypothesis for instantaneous core loss is
[23]

Pv(t) = Pd(
dB

dt
, B) (8)

wherePd is an unknown power dissipation function. Assum-
ing thatPd is a single-valued function ofdB/dt andB may
oversimplify the actual physical phenomena that, in general,
depend on the time-history of the flux waveform as well as
on its instantaneous value and derivative [9], [24]. However,
if a functionPd can be found that matches experimental re-
sults well, calculating loss for arbitrary flux waveforms is then
straightforward.

One possible form forPd would be simply

Pv(t) = kγ

∣∣∣∣dBdt
∣∣∣∣γ . (9)

This dependence ondB/dt is physically plausible, as in the
motivation for the MSE, but here there is some freedom to
chooseγ to attempt to make the results match the experimen-
tal exponents in the Steinmetz equation (1). However, the pos-
sible results can only haveα = β = γ, which contradicts the
typical experimental result thatβ > α, oftenβ ≈ α + 1. If,
however, we modify our hypothesis to

Pv(t) = k1

∣∣∣∣dBdt
∣∣∣∣a |B(t)|b (10)

we can show that this is consistent with the Steinmetz equation
for sinusoidal waveforms if we choosea = α andb = β − α.

Pv(t) = k1

∣∣∣∣dBdt
∣∣∣∣α |B(t)|β−α (11)

From this hypothesis, a formula that can be used to calculate
loss for any waveform results directly:

Pv =
1
T

∫ T

0

k1

∣∣∣∣dBdt
∣∣∣∣α |B(t)|β−αdt (12)

We denote (12) as the generalized Steinmetz equation (GSE).
To check that the GSE is in fact consistent with the Stein-

metz equation for sinusoidal waveforms, we substituteB(t) =
B̂ sinωt, resulting in

P v = k1ω
αB̂β

∫ T

0

1
T
|cosωt|α|sinωt|β−αdt (13)

With T = 2π/ω, the integral here is independent ofω, and
so this result can be made equal to the Steinmetz equation (1)
with the appropriate choice ofk1

k1 =
k

(2π)α−1
∫ 2π

0
|cosθ|α|sinθ|β−αdθ

. (14)
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Fig. 1. Comparison of Loss predicted by the MSE, GSE, and Steinmetz equa-
tions with experimental data and Steinmetz coefficients from [21], for tri-
angular waveforms with different duty cycles. The Steinmetz coefficients
here areα = 1.3, β = 2.55, andk = 12. The loss plotted is the total
loss in a 17.3 cm3 core. The fundamental frequency of excitation is 20
kHz, and the peak flux amplitude is 200 mT.

Thus, our hypothesis for the appropriate form ofPd in (8)
has been shown to be consistent with the Steinmetz equation
(1) for sinusoidal waveforms, and (12) may be considered a
generalization of the Steinmetz equation for any waveform.
It represents an improvement over the MSE in that different
choices for the nominal period of the waveform do not affect
the result, and, for sinusoidal waveforms, it can be expected to
provide the same accuracy as the Steinmetz equation provides.
An important limitation is that it is typically necessary to use
different values of the parameters in the Steinmetz equation
for different frequency ranges [1]. This shows that the GSE
(12) will necessarily be limited in accuracy for a waveform
containing harmonics at a wide range of frequencies.

III. C OMPARISON WITH EXPERIMENTAL

MEASUREMENTS

A. Experimental data from the literature: triangular wave-
form with variable duty cycle

In [5], [21], the MSE’s calculated loss is compared to ex-
perimentally measured loss for 3C85 ferrite with a variable-
duty-cycle triangular flux waveform with a 20 kHz fundamen-
tal frequency. The MSE provides a good match to experimen-
tal results. These experimental measurements are compared
with the predictions of the GSE, the MSE, and the Steinmetz
equation in Fig. 1, using the parametersα = 1.3, β = 2.55,
andk = 12, for B in Tesla,f in Hz, andPv in W/m3, from
[21]. From this plot it appears that both do reasonably well,
with the GSE working better at duty cycles near 50% and the
MSE working better at the most extreme duty cycle of 95%.
This data is not sufficient to make any clear conclusions about
the relative accuracy of the two methods.
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Fig. 2. Comparison of Loss predicted by the MSE, GSE, and Steinmetz
equations with experimental data from [21] and parameters for the 100-
200 kHz frequency range from [1] (α = 1.5, β = 2.6, andk = 1.5.
The loss plotted is the total loss in a 17.3 cm3 core. The fundamental
frequency of excitation is 20 kHz, and the peak flux amplitude is 200 mT.

The underestimate provided by either method for the ex-
treme point at 95% duty cycle could be explained by the fact
that the Steinmetz parameters used only work well over a lim-
ited frequency range; [1] recommends different parameters for
frequencies in the 100 kHz to 200 kHz range, where, in par-
ticular,α = 1.5 gives a better fit. The steep slope in a 95%
duty-cycle, 20 kHz excitation is the same as the slope 50%
duty cycle operation at 200 kHz, so these parameters are ar-
guably more appropriate. In Fig. 2, the same experimental
data is compared to the predictions of the three models with
the 100 kHz to 200 kHz parameters provided by [1]. The fit
near 50% duty cycle is poor, for either model, but the fit at
high duty cycle is improved, particularly for the GSE, which
now fits the last two data points very well. This shows that
both, and particularly the GSE, can do well, but are limited by
the accuracy of theunderlying Steinmetz model for sinusoidal
loss. For waveforms that have harmonic energy over a wide
range of frequencies, this limitation is most severe, since, for
any given waveform, a single set of parameters must be used,
and the strategy of using different parameters for different fre-
quency ranges as in [1] is not as straightforward to apply, even
though the results in Fig. 1 and 2 show that it can work well.

B. New experimental measurements: sum of harmonically-
related sinusoids

The theoretical discussion in Section I-A of the loss with
a flux waveform consisting of two harmonically related sinu-
soids indicated that the GSE had some advantages over the
MSE in this situation, but this needed to be verified experi-
mentally. To obtain the necessary experimental data, we per-
formed core loss measurements using two windings of six
turns each on a toroidal core of 3C85 MnZn power ferrite
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Fig. 3. Loss measurement experiment.

(Philips), as shown in Fig. 3. The outputs of two synchro-
nized function generators are combined and fed to an ampli-
fier (Hafler P4000, designed for audio applications but with
a power bandwidth of 200 kHz). Current is sensed with a
50 MHz ac current probe (Tektronics P6021), and a 60 MHz
bandwidth 200 MSa/s oscilloscope (Agilent 54621D) is used
to acquire, multiply, and average voltage and current wave-
forms, using averaging to obtain 11-bit resolution.

The core is submerged in a 100◦C vegetable oil bath in or-
der to perform measurements at a constant temperature con-
sistent with the primary data given in [1] and with the mea-
surements in [5], [21]. The amplifier is turned on only briefly
when each data point is measured, in order to be sure the core
remains at thermal equilibrium with the oil bath. The two-
six turn windings used Teflon-insulated stranded wire (AWG
30 constructed from 7 strands of AWG 38) to minimize eddy
current loss and capacitive effects that might affect the mea-
surement. Each winding was distributed uniformly around the
core. Initial experiments showed that submerging the core in
room-temperature oil affected the measurement by about 5%,
indicating a 5% error. Blocking the hole in the center of the
core with a rubber plug eliminated this effect, or reduced it to
an unmeasurable level. Apparently, significant displacement
currents were being induced in the oil, circulating in a closed
path through the center hole, and they were blocked by plug-
ging the hole. The core has an inner diameter of 19.5 mm, an
outer diameter of 39 mm, and a thickness of 12.5 mm.

Fig. 4 compares the predictions of the MSE and the GSE
for a flux waveform

B(t) = A [(1− c) sinω0t+ c sin(3ω0t+ φ)] . (15)

This is the same waveform as (7) withm = 3 selected (third
harmonic), and the possibility of a phase shiftφ added. Fig. 4
shows that as the fraction of third harmonic,c, rises from zero
to about 0.15, the curves are very similar for both models.
However, depending on phaseφ, they begin to deviate above
that point, with the most dramatic separation occurring above
c = 0.6. An interesting difference is that abovec = 0.6, the
GSE predicts almost no sensitivity to phase, whereas the MSE
retains that sensitivity through most of the range of values of
c.
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Fig. 4. Loss predicted by the MSE and the GSE for a flux waveform com-
posed of two harmonically related sinusoids (15). The example here is
based on loss in the 3C85 MnZn ferrite core used in the experiment shown
in Fig. 3 with 20 kHz and 60 kHz sinusoids, with the fraction of 60 kHz
described by the parameterc of (15). The three curves for each model are
for different phase relationships between the sinusoids, as marked on the
plot and defined byφ in (15).

We performed two sets of experiments, designed to exam-
ine experimentally the differences between the GSE and MSE
and determine which is more accurate. In the first experi-
ment, we held phase fixed and scanned through a range of
relative amplitudes of the two sinusoidsc. Because the zero-
phase curve showed the most interesting theoretical behavior,
dipping substantially before rising, and with significant differ-
ences between the GSE and MSE arising relatively early, we
chose to perform the measurements with phaseφ = 0. The re-
sults of this first experiment are shown in Fig. 5. As expected,
the MSE and the GSE both fit well for the pure fundamental
(c = 0), and atc = 1 the MSE fits poorly, but the GSE fits
well. The experimental data is about 5% high atc = 0 com-
pared to either model, and also 5% above the GSE at the other
endpoint. This could be attributed to batch-to-batch variation
in the ferrite relative to the batch(es) measured to produce the
Steinmetz parameters in [1], inaccuracies in using databook
values for effective volume and area, or to a systematic error
in our measurements. However, the consistency of the 5% er-
ror between the endpoints confirmed that the value ofα that
we used, 1.3, accurately described the loss behavior for pure
sinusoids.

Throughout the range ofc > 0.6, the GSE fits much better
than the MSE, which has an error of about 57% at thec = 1
endpoint. However in the range of0.3 ≤ c ≤ 0.5, the GSE has
significant error (up to 40%), while the MSE is more accurate.
The maximum error of the GSE is smaller than the error of the
MSE, and it is the better model over a wider range of values
of c, but the middle range of harmonic amplitudes, where the
MSE is more accurate, may be important in a greater number
of applications.
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Fig. 5. Comparison of loss predicted by the MSE and the GSE to experi-
mental data for a flux waveform composed of two harmonically related
sinusoids (15), with phaseφ = 0. The two sinusoids are at 20 kHz and
60 kHz, with a maximum amplitude of 200 mT.
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Fig. 6. Comparison of loss predicted by the MSE and the GSE to experi-
mental data for a flux waveform composed of two harmonically related
sinusoids (15), with fixed amplitudes of a ratioc = 0.7 and with phaseφ
varied.

For the second set of experiments, we held the amplitudes
fixed and varied only phase. Looking at Fig. 4, we chose to do
this atc = 0.7 because the two models are dramatically dif-
ferent at that point, with the GSE predicting no variation with
phase, and the MSE predicting significant variation. Fig. 6
shows the results of that experiment. Although the loss does
show some sensitivity to phase, the variation is only about 8%,
whereas the MSE predicts a 30% variation. The GSE predic-
tion is more accurate both in predictinglittle variation with
phase, and in predicting the magnitude of loss.
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C. Discussion

Overall the GSE is more accurate than the MSE in most
situations, and is useful over a broader range of conditions.
In situations with a small-amplitude fundamental-frequency
component in the flux waveform, such as might be encoun-
tered in some integrated magnetic components, the MSE fails
to provide useful predictions, and the GSE is clearly superior.

However, the GSE does have significant limitations. Firstly,
it depends on having set of Steinmetz parameters valid for
the full range of frequencies of interest. As shown in Figs. 1
and 2, the use of different parameters may be necessary to
cover a wide range of frequencies in the flux waveform spec-
trum. While an examination of the predominant frequencies
involved in producing loss can probably adequately guide the
selection of parameters for that frequency range, a less ad-hoc
approach would be desirable.

Also, we have found one range of harmonic amplitudes and
phases where the GSE can have as much as 40% error in pre-
dicting loss: the range where the third harmonic flux ampli-
tude is near to, but smaller than the fundamental flux ampli-
tude (around0.3 ≤ c ≤ 0.5), with phase equal to zero. Be-
cause the GSE relies only on the Steinmetz parameters, and
does not attempt to model hysteresis processes in a physically
meaningful way, it is not surprising that it does have some lim-
itations. The deviation between the GSE and the MSE begins
aroundc = 0.15, which is also about where the BH trajec-
tory begins to have minor loops, because the flux waveform
has multiple peaks. This may indicate that hysteresis model-
ing explicitly taking these minor loops intoaccount would be
necessary to overcome this limitation of the GSE.

Despite its limitations, we believe that the GSE is in most
cases the most useful tool available to magnetics design-
ers who need to predict losses in MnZn ferrites with non-
sinusoidal flux waveforms. It gives accurate predictions for
a wide range of conditions, and provides a simple way to
make these predictions requiring no material characterization
beyond the Steinmetz parameters, which are often available
from core manufacturers.

Future experimental work should expand the range of test
conditions, including more complete data with different pa-
rameter values for excitation by two harmonically-related si-
nusoids, testing of dc-bias effects, and testing of different core
materials.

IV. EFFECTIVE FREQUENCY AND EFFECTIVE AMPLITUDE

We define effective amplitude as an amplitude that may be
substituted into a simple formula, originally intended for sim-
ple waveforms, to enable calculation of loss arising from arbi-
trary waveforms. A familiar example of an effective amplitude
is rms amplitude, which, for current in a resistor, allows the
use of the dc loss formulaI2

dcR to calculate loss for any wave-
form, if the effective amplitude of current,Irms, is substituted
for Idc. The use of rms amplitude for this case is dependent
on the specific loss mechanism in the resistor—that of Joule
heating. Different loss mechanisms lead to different formu-
lations for the appropriate type of effective amplitude. For

example, in a diode, where voltage drop is not proportional to
current, rms current is not appropriate for calculating loss. If
the voltage drop is approximately constant, average current is
the appropriate effective amplitude.

Effective frequencies are less commonly used than effective
amplitudes, but can be useful for frequency-dependent wind-
ing losses [25], [26], [27]. Again, the calculation of effective
frequency is specific to the loss mechanism, in this case eddy-
current losses in conductors that are small compared to a skin
depth.

For use in the Steinmetz equation, what is needed is an ef-
fective frequencyfe and an effective amplitudêBe, defined
such that

P v =
1
T

∫ T

0

k1

∣∣∣∣dBdt
∣∣∣∣α |B(t)|β−αdt = kfαe B̂

β
e . (16)

This is one equation with two unknowns, so we have the free-
dom to define either one arbitrarily, and then simply solve (16)
to define the other. However, the result should ideally make
some sense in that the effective frequency should relate to the
rate at which things change in the waveform, and the effec-
tive amplitude should relate to the amplitude of the waveform
features.

One possibility would be to use one of a number of stan-
dard, known measures for amplitude to computeB̂e, such as
rms, peak-to-peak amplitude, or average absolute value of am-
plitude. However, this approach can lead to counter-intuitive
definitions of effective frequency.

If we use peak-to-peak amplitude, the difference in loss in-
duced by the two different waveforms shown in Fig. 7 would
have to be accounted for by differences in effective frequency,
since the peak-to-peak amplitude is the same. Yet these wave-
forms intuitively should have similar if not identical effective
frequencies.

Next we consider the other conventional amplitude mea-
sures, average absolute value and rms, which are special cases
of the general expression

B̂e =

(
1
T

∫ T

0

|B(t)|bdt
)1
b

(17)

whereb = 1 for average absolute value andb = 2 for rms.
The results will correlate well with an intuitive idea of am-
plitude for any reasonable value ofb, but, specifically for the
Steinmetz equation, the calculations are greatly simplified and
more appealing withb = β. Then, solving (16) forfe results
in

fe = k2

[∫ T
0

∣∣dB
dt

∣∣α |B(t)|β−αdt∫ T
0
|B(t)|βdt

]
. (18)

This is a reasonable, defensible choice. However, it ar-
guably still gives results that do not properly correlateB̂e with
amplitude-related changes andfe with rate changes. Con-
sider, for example, the waveforms in Fig. 8. The peak-to-peak
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Fig. 7. Two waveformswith the same peak-to-peakamplitude, but that induce
different loss, and intuitively should have the same effective frequency.
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Fig. 8. Two waveforms that are expected to induce the same loss, and that
intuitively should have the samefe and the samêBe (the same effective
frequency and effective amplitude).

amplitude is the same, and the waveforms change the same
amount at the same rate. It is merely the sequence that is dif-
ferent. Calculation of loss using (12) gives the same result
for either waveform, and it would make sense for the effective
amplitude and the effective frequency to also be constant be-
tween the two. But the formulae (17) and (18) give drastically
different results for each. Changing the value ofb in (17) does
not help.

Another approach would be to use an established measure
for effective frequency. In fact, the “equivalent frequency”
proposed in [5] is related to a well established measure of ef-
fective frequency used in winding-loss calculations [25], [26],
[27]. A generalized form of the effective frequency used in
[25], [26], [27] would be

fe =

(
1
T

∫ T
0

∣∣dB
dt

∣∣a dt) 1
a

2π
(

1
T

∫ T
0
|B(t)|bdt

)1
b

(19)

Alternatively, some other measure of magnitude forB could
be used in the denominator of (19), as is done in the “equiv-
alent frequency” used for the MSE (5), where peak-to-peak
amplitude is used anda = 2 [5]. In addition, (5) differs by
omitting the division byT , and omitting theath root. In the
case of a single sinusoid, these two differences cancel each
other, and the result is an “equivalent frequency” equal to
the actual frequency, but, as discussed in Section I-A, for a
waveform consisting primarily of a harmonic, the “equivalent
frequency” ends up counterintuitively mismatching the actual
frequency of the main component of the waveform. The result
is still useful in the MSE, but it is not the effective frequency
we wish to use here.

The most natural way to use (19) with (12) would be to
usea = b = α in this formulation. However, the net result
is a more complicated overall calculation ofB̂e andfe than
(17) and (18) and the result is subject to all the limitations
inherent in whatever measure of amplitude ofB is used in the
denominator of (19).

Given the limitations of the approaches discussed above, a
better measure of effective frequency is desired. The follow-
ing criteria are necessary (though perhaps not sufficient) in
order for a set of effective frequency and effective amplitude
measures to work for predicting loss and to overcome the ob-
jections to other approaches discussed above:

• The amplitude and frequency of any pure sinusoid should
match the conventional measures (or at least be proportional
to them).
• The loss calculated according to the Steinmetz equation
should match the loss calculatedaccording to the GSE ( (8)
should be satisfied).
• For waveforms such as those shown in Fig. 7, the difference
should be primarily in effective amplitude rather than effective
frequency.
• For waveforms such as those shown in Fig. 8, both the effec-
tive amplitude and the effective frequency should both match
between the two cases.
• An addition of dc bias may reduce effective frequency, or
may increase effective amplitude, but it should not increase
effective frequency or decrease effective amplitude.

We propose two approaches thateach satisfy most of these
criteria:

A. Effective parameters: first option

An effective amplitude can be defined as one-quarter of the
total integral of the flux change. For waveforms that do not
have multiple peaks, this corresponds to peak-to-peak ampli-
tude.

B̂e =
1
4

∫ T

0

∣∣∣∣dBdt
∣∣∣∣ dt (20)

Then effective frequency is defined by (16).
This approach satisfies all the criteria except for dc bias.

The effective amplitude is not affected by bias, which does
not directly pose a problem, but unfortunately it does means
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that effective frequency must increase with dc bias in order
to account for the increased losses observed in practice and
predicted by (12).

B. Effective parameters: second option

Alternatively, an effective frequency can be defined as fol-
lows:

fe =

∫ T
0

∣∣∣d2B
dt2

∣∣∣ dt
2π
∫ T

0

∣∣dB
dt

∣∣dt (21)

Then effective amplitude is defined by (16).
The results of this approach satisfy all the criteria described

above, and may be used as a definition of effective frequencies
and amplitudes that allow the Steinmetz equation to deliver
results identical to those of the GSE (12).

V. CONCLUSION

The generalized Steinmetz equation (GSE) (12) is a new
formulation that is fully consistent with the Steinmetz equa-
tion for sinusoidal waveforms, but allows the calculation of
loss for any waveform. Experiments show that it is often more
accurate than the MSE method, particularly for waveforms
with small fundamental-frequency amplitudes, where exper-
imental results show the MSE can err by 57% where the GSE
gives error of only 5%. Although theaccuracy of the GSE is
typically within 5%, errors as high as 40% can arise in some
situations. Nonetheless, we believe the GSE to be the most
practical method for calculating core loss with non-sinusoidal
waveforms in most high-frequency magnetics design work,
because it requires only readily available sinusoidal loss data,
in the form of parameters for the Steinmetz equation charac-
terizing the material.

Although the GSE (12) is the only result needed to calculate
loss for nonsinusoidal waveforms, it may also be elucidative
to describe a waveform in terms of an effective frequency and
an effective amplitude. Many standard approaches to defining
effective frequency and effective amplitude have been shown
to be inappropriate for describing loss in magnetic materials.
Two new formulations for effective frequency and effective
amplitude are proposed, one of which (21) is found to meet all
the criteria we propose for a good way to define those param-
eters in this application.
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