Improved Calculation of Core Loss with Nonsinusoidal Waveforms

Jieli Li, Tarek Abdallah, and Charles R. Sullivan
Dartmouth College, Hanover, NH, 03755, USA, http://engineering.dartmouth.edu/inductor

Abstract—An extension to the Steinmetz equation is proposed, to en- considering eddy currents resulting from domain wall motion

able estimation of hysteresis losses in magnetic core materials with nonsi- [10], [9]. The results for sinusoidal waveforms can be ex-
nusoidal flux waveforms. The new formulation is shown to avoid anoma-

lies present in previous modified-Steinmetz-equation calculations of loss pressed as

with nonsinusoidal waveforms. Comparison with experimental measure- .

ments in MnZn ferrite shows improved accuracy. The result may be op- P...= C(Bf)V (3)
tionally formulated in terms of an effective frequency and an effective

amplitude, and options for defining these are discussed. .
P P 9 whereC' and~ are constants angd = 2 ory = % under dif-

ferent assumptions. The model can also be used to predict
loss with nonsinusoidal waveforms, with= % giving good
OR the purpose of designing magnetic power devices, iresults for laminations and amorphous ribbon material [11],
cluding electric machines, transformers, inductors, amyen though [11] improperly applies Fourier series to a non-
other static reactors, loss in the magnetic material is often phieear system.
dicted using a power law equation [1], [2] Similar or equivalent approaches to modeling losses in fer-
rites, with~r = 2 (implicitly or explicitly) have sometimes
- R been used [12], [13], [14]. It is also possible to use similar
Py(t) = kf*B? (1) models that use linear dynamics and so have dynamic loss that
. depends on the square of the flux density, but that have more
whereB is the peak flux amplitude?, (¢) is the time-average complex frequency dependence [15], [16], [17]. We have not
power loss per unit volume, anflis the frequency of sinu- used any of these approaches, for both practical and theoret-
soidal excitation. A similar equation, but without the freical reasons. Firstly, in regions of high frequency and high
quency dependence, was proposed by Steinmetz in 1892 {Bix density, where losses in power ferrites are primarily ex-
and so (1) is often referred to as the Steinmetz equation. lbess losses, the values @fand 3 in (1) are often different
fortunately, the Steinmetz equation, as well as the data pfeem either value proposed for, anda is smaller thans, by
vided by manufacturers of magnetic materials, is based omly much as a factor of two [1]. The complex frequency depen-
on sinusoidal excitation, whereas switching power converteience in [16], [17] can help, but the results are still restricted
and, increasingly, electric machines, can have very differagthaving the dynamic portion of the loss depend®n which
waveforms. These nonsinusoidal waveforms result in diffafjay not agree with experimental data. This is not surprising,
ent losses [4], [5]. DC bias can also significantly affect losg§nce the excess loss mechanisms in ferrite may be more di-
[6], [7], [8]. A better method of determining loss, accurate fofectly related to hysteresis [18], [19] than is assumed in the
a wider variety of waveforms, is needed. Our work is motinodels described in [10], [9]. It is not yet clear how to most
vated primarily by applications to MnZn power ferrite materiagccurately model the excess loss mechanism in ferrite. More
als. However, the results may be useful for other materials @stailed modeling of the dynamics of the hysteresis mecha-
well. nism show promise to give the most accurate results [20].

A standard method of analyzing core loss in more detail However, all of the approaches using loss separation also
is to break it up into static hysteresis laBs, classical eddy have a practical disadvantage: they require extensive measure-
current lossP.;, and “excess 0SSP [9] ment and parameter extraction with a given material before

S they become useful. For practical design work, it would be
Py(t) = Pr + Por + Pege. () preferable to be able to use manufacturer’s data which is typi-
The classical loss is a linear phenomenon, and depends ont I(Iay provideq either in terms of cogﬁicie_nts for the _Steinmetz
’ e(guation, or in plots of loss for sinusoidal excitation, from

square of the flux density. It can be directly calculated froWhich the coefficients of the Steinmetz equation can easily be
geometry and bulk resistivity in ferrites, and, for power feréxtracted

rites, it is typically small in the regions of interest. Static hys- In [4], [5], [21], a modified Steinmetz equation (MSE) s de-

teresis loss is proportional to frequency, but typical values \%Ioped to estimate loss with nonsinusoidal waveforms. The

5 in (1) are around 1.5 10 2 in MnZn power ferrite matenMSE appears to be what we are seeking, in that it requires no

als [1]. This indicates that the bulk of the important losses Waterial characterization beyond the coefficients in the Stein-

;errer'fsagfﬁéiﬁfnzggfgogefggﬁg'irixcfriznlfsfgs;égsshzgg' i€ tz equation. It uses a combination of an effective frequency
' P brog nd a repetition rate frequendgy. The analysis is moti-

made in modeling excess losses in laminated alloys, base vgped by the idea that loss due to domain wall motion should

This work was supported in part by a grant from Volterra. depend oniB/dt. The MSE provides a good fit to experi-

I. INTRODUCTION
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mental measurements of core loss with waveforms that deviéte the constant is varied from zero to one, the core losses
significantly from sinusoidal shapes in both ferrites and lamivould be expected to gradually increase up to a faptér
nated alloys, without any additional parameter extraction [3]mes the original losses. However, the MSE shows different
[21]. Thus, thisis the previous work that has best achieved dughavior in this case.

objectives, and itis discussed in more detail in Section I-A.

In this paper, we refine the hypothesis of how loss dependsthe first surprise is that when we calculatg (5) with ¢
on (dB/dt), in order to overcome anomalies in the behavigfpproaching one, the resultis? f,, not the expectedn fo.
of the loss predicted by the MSE in [4], [S], [21]. The newjowever, despite this apparent overestimate of equivalent fre-
hypothesis leads to a formula for calculating loss in the 9€fuency, the power loss is typically underestimated: cAsp-
eral case, which we term the generalized Steinmetz equatijgaches one, the MSE predicts loss approachirfg—2.
(GSE). The Steinmetz equation is shown to be a special C3$fs, the MSE underestimates by a factome? 2 the loss
of the GSE. The GSE is also shown to avoid the anomaligfh a flux waveform comprising am® harmonic plus a
of the MSE. A further benefit of the GSE is that it producegegligible fundamental component. For a typical value of
dc-bias sensitivity without the need to include additional meg: — 1 5 this error is a factor ot /\/m, or 0.58 for a third
surements or curve-fitting functions for that purpose. harmonic. We see that if = 2, the error is zero. Thus, the
The GSE can be used directly, or can be used to generatq g8 implicitly assumes loss proportional f8, while at the
“equivalent frequency” and an “equivalent amplitude” that cagy me time assuming loss proportionalffo. Given this con-
be applied in the Steinmetz equation. These two parametgfg it is not surprising that some anomalies arise.
may be chosen in various ways if the only constraint is that
the Steinmetz equation give the same result as the GSE. Thusl’he region of: near one might seem to be only of academic

we need to introduce additional criteria. Appropriate criteria : .
are discussed, and possible choices for effective frequency r}ltg rest, since many waveforms have harmonics that are sma_ll
effective amplitude are evaluated in Section IV. compared to th? fundamental. quv_ev_er, the Space of possi-
ble waveforms is very large, and it is impossible to explore
A. The MSE them all, so it is worth paying attention to an anomaly that
ears at one of the small subset of points that we have ex-
ed, and where we know what to expect. In addition, in
multi-phase interleaved power converters with coupled mag-
T 9 netics (e.g., [22]), such waveforms can arise, and it is in this
<@> - L/ (@) dt (4) ftype of application, with waveforms that deviate dramatically
dt [  ABJy \dt from sinusoids, that a more general loss calculation method is
most needed.

a
Based on physical understanding that loss depends F;ngr
dB/dt, [5] averageslB/dt over a flux excursion to obtain

where AB is the peak-to-peak flux amplitude afidis the
period of the flux waveform. From this, an “equivalent fre-

quency” is defined as Beyond the problematic region where c is approaching one,

atc = 1, there are at least two possible interpretations, be-
9 /T (dB)2 cause the period used for the integral in (5) andffom (6)
dt
0

Jea dt

= Apea2 (5) is not uniquely defined. Considering the waveform as a pure
e . . . .
sinusoid at frequencyn f; yields different results from con-
The loss is then estimated with the modified Steinmetz eqfdering it as a pure t harmonic of frequencyy. Neither
tion (MSE): choice is fully satisfactory. Using the latter interpretation re-
sults in a sudden jump in losses@sicreases from — ¢ to
P, = kfgf;léﬁfr (6) 1, whereas using the former interpretation results in different
results from the Steinmetz equation for what is in fact a pure
where B is the peak flux amplitudeP,, is the time-average Sinusoid, and it leaves open the question of whether any given
power loss per unit volume anfl. = 1/T is the repetition pure sinusoid should be considered a harmonic of some lower
frequency [5]. frequency. Thus, in addition to the substantial underestimate
One disadvantage of this formulation is that, although ti§é loss with small fundamentals as described above, the MSE
dependence of loss @B/ dt is included, the manner in which has an undesirable dependence on what is chosen as the nom-
it is included is not specifically matched to the frequency d#al fundamental period.
pendence of the Steinmetz equation. Thus, it is not clear from
the derivation of the MSE that it will behave consistently with  Another difficulty with the MSE is the treatment of wave-
the simple Steinmetz equation (1). In fact, it does not. Fegrms with multiple peaks, such as those shown in Fig. 7, in
example, consider a flux waveform consisting two sinusoid@hich peak-to-peak amplitude is not adequately descriptive.
components, at a frequengy, = 27 fy and at an integer mul- As discussed in [4], it is possible to break up the waveform
tiple of that frequencynwg into multiple pieces, treating each separately. hdligh that
) ) approach appears to be effective, it would be more desirable
B(t) = A[(1 — ¢)sinwgt + csin mwot] . (7) " to be able to directly calculate loss from the waveform.
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Il. THE GSE: H'POTHESIS ANDCONSISTENCY WITH 3
STEINMETZ EQUATION Sal o |
A fairly general hypothesis for instantaneous core loss R
[23] 26 1 T
dB 24 B
Py(t) :Pd(EaB) ® |

where P, is an unknown power dissipation function. Assum’; -
ing that P, is a single-valued function of B/dt and B may

oversimplify the actual physical phenomena that, in gener:
depend on the time-history of the flux waveform as well ¢ - i
on its instantaneous value and derivative [9], [24]. Howeve

if a function P; can be found that matches experimental re 41 1

Loss [W]

1.8

sults well, calculating loss for arbitrary flux waveforms isthe | — oSt |
straightforward. -~ Simple Steinmitz
O Data from [21]

1 Il Il Il Il Il Il Il
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Duty Cycle

One possible form foP; would be simply

y
P,(t) =k, % 9)

Fig. 1. Comparison of Loss predicted by the MSE, GSE, and Steinmetz equa-
tions with experimental data and Steinmetz coefficients from [21], for tri-

; ofB ; i ; ; angular waveforms with different duty cycles. The Steinmetz coefficients
ThIS_ de_pendence /dt IS phyS|caIIy pl_au5|ble, as in the here arex = 1.3, 8 = 2.55, andk = 12. The loss plotted is the total
motivation for the MSE, but here there is some ffeed(?m 10 |oss in a 17.3 crh core. The fundamental frequency of excitation is 20
choosey to attempt to make the results match the experimen- kHz, and the peak flux amplitude is 200 mT.
tal exponents in the Steinmetz equation (1). However, the pos-
sible results can only have = 3 = ~, which contradicts the

typical experimental result that > «, often ~ « + 1. If, Thus, our hypothesis for the appropriate form/&fin (8)
however, we modify our hypothesis to has been shown to be consistent with the Steinmetz equation

(1) for sinusoidal waveforms, and (12) may be considered a
generalization of the Steinmetz equation for any waveform.
It represents an improvement over the MSE in that different
choices for the nominal period of the waveform do not affect
we can show that this is consistent with the Steinmetz equatip@ result, and, for sinusoidal waveforms, it can be expected to
for sinusoidal waveforms if we choose= o andb = 3 — .  provide the same accuracy as the Steinmetz equation provides.
An important limitation is that it is typically necessary to use
|B(t)]°~ (11) different values of the parameters in the Steinmetz equation
for different frequency ranges [1]. This shows that the GSE
12) will necessarily be limited in accuracy for a waveform
@ntaining harmonics at a wide range of frequencies.

a

B oy (10)

Pyt) =k |

[e3

dB

P»U(t):lfl E

From this hypothesis, a formula that can be used to calcul
loss for any waveform results directly:

IIl. COMPARISON WITH EXPERIMENTAL

T
! |B(t)|P~dt (12) MEASUREMENTS

Po==[ ki
T 0

[e3

dB
dt

A. Experimental data from the literature: triangular wave-
We denote (12) as the generalized Steinmetz equation (GSE).form with variable duty cycle
To check that the GSE is in fact consistent with the Stein- |, [5], [21], the MSE’s calculated loss is compared to ex-

metz equation for sinusoidal waveforms, we Substiit§ = erimentally measured loss for 3C85 ferrite with a variable-
Bsinwt, resulting in duty-cycle triangular flux waveform with a 20 kHz fundamen-
T tal frequency. The MSE provides a good match to experimen-
P, = klwaéﬁ/ l|coswt|a|sinwt|ﬁ*adt (13) tal results. These experimental measurements are compared
o T with the predictions of the GSE, the MSE, and the Steinmetz

) . o equation in Fig. 1, using the parameters= 1.3, 3 = 2.55,
With T = 2x/w, the integral here is independentwof and g b — 192 fo? Bin Tegla ¥ iFr)l Hz. andP. in Wemg from

so this result can be made equal to the Steinmetz equationGhy - £y this plot it appears that both do reasonably well,
with the appropriate choice &f with the GSE working better at duty cycles near 50% and the

k MSE working better at the most extreme duty cycle of 95%.
— e (14) This data is not sufficient to make any clear conclusions about
(2m)>=t [5 " |cosb|*|sinf| P~ d6 the relative accuracy of the two nieids.

k1=
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Fig. 3. Loss measurementexperiment.

12 b

(Philips), as shown in Fig. 3. The outputs of two synchro-
15 oss o6 o065 o7 o os s os oss 1 hized function generators are combined and fed to an ampli-
buty Cycle fier (Hafler P4000, designed for audio applications but with
_ _ _ ~a power bandwidth of 200 kHz). Current is sensed with a
Fig. 2. = Comparison Of_'-OSSt F;fgdt'ﬁ?d by[zt;‘]e MSE, OSE, a”(: Stenm®d MHz ac current probe (Tektronics P6021), and a 60 MHz
equations with experimental data from ana parameters 1or the - . . . .
200 kHz frequency range from [Lh(= 1.5, 3 = 2.6, andk = 1.5. O:Jandwu_jth 200 MSa/s oscilloscope (Agilent 54621D) is used
The loss plotted is the total loss in a 17.3%wore. The fundamental t0 acquire, multiply, and average voltage and current wave-
frequency of excitation is 20 kHz, and the peak flux amplitude is 200 mforms, using averaging to obtain 11-bit resolution.
The core is submerged in a 1@ vegetable oil bath in or-

der to perform measurements at a constant temperature con-

The un_derestin;ate provided by either method for the exjsient with the primary data given in [1] and with the mea-
treme point at 95% duty cycle could be explained by the fagl ements in [5], [21]. The amplifier is turned on only briefly

that the Steinmetz parameters used only work well over a lighen each data point is measured, in order to be sure the core
ited frequency range; [1] recommends different parameters {@hains at thermal equilibrium with the oil bath. The two-
frequencies in the 100 kHz to 200 kHz range, where, in paliy +,r windings used Teflon-insulated stranded wire (AWG
ticular, a = 1.5 gives a better fit. The steep slope in a 95%q consiructed from 7 strands of AWG 38) to minimize eddy
duty-cycle, 20 kHz excitation is the same as the slope 50%rent joss and capacitive effects that might affect the mea-
duty cycle operation at 200 kHz, so these parameters aré Qfrement. Each winding was distributed uniformly around the

guably more appropriate. In Fig. 2, the same experimenta).q |njtial experiments showed that submerging the core in

data is compared to the predictions of the three models Wf%m-temperature oil affected the measurement by about 5%,

the 1000kHZ to 200 kHz parameters provided by [1]. The fifjicating a 5% error. Blocking the hole in the center of the
near 50% duty cycle is poor, for either model, but the fit ¢ yith a rubber plug eliminated this effect, or reduced it to
high duty cycle is improved, particularly for the GSE, whichy, ynmeasurable level. Apparently, significant displacement

now fits the last two data points very well. This shows thalrrents were being induced in the oil, circulating in a closed

both, and particularly the GSE, can do well, but are limited by, through the center hole, and they were blocked by plug-
the accuracy of thenderlying Steinmetz model for sinusoidal ing the hole. The core has an inner diameter of 19.5 mm, an

loss. For waveforms that have harmonic energy over a Wiggier diameter of 39 mm. and a thickness of 12.5 mm.

range of frequencies, thl_s limitation is most severe, since, for ig. 4 compares the predictions of the MSE and the GSE
any given waveform, a single set of parameters must be u a flux waveform

and the strategy of using different parameters for different fre-
guency ranges as in [1] is not as straightforward to apply, even
though the results in Fig. 1 and 2 show that it can work well.

B(t) = A[(1 — ¢) sinwot + csin(3wot + ¢)] . (15)

. . . his is the same waveform as (7) with = 3 selected (third
B. New experimental measurements: sum of harmonically- . o . .
related sinusoids armonic), and the p0§,3|bll|ty (_)f a phase _sﬁx_indded. Fig. 4

shows that as the fraction of third harmonigcrises from zero

The theoretical discussion in Section I-A of the loss witto about 0.15, the curves are very similar for both models.

a flux waveform consisting of two harmonically related sinuHowever, depending on phasethey begin to deviate above
soids indicated that the GSE had some advantages over ttie point, with the most dramatic separation occurring above
MSE in this situation, but this needed to be verified experi-= 0.6. An interesting difference is that above= 0.6, the
mentally. To obtain the necessary experimental data, we p@8ISE predicts almost no sensitivity to phase, whereas the MSE
formed core loss measurements using two windings of gigtains that sensitivity through most of the range of values of
turns each on a toroidal core of 3C85 MnZn power ferrite
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Fig. 4. Loss predicted by the MSE and the GSE for a flux waveform corftig. 5. Comparison of loss predicted by the MSE and the GSE to experi-
posed of two harmonically related sinusoids (15). The example here is mental data for a flux waveform composed of two harmonically related
based on loss in the 3C85 MnZn ferrite core used in the experiment shown sinusoids (15), with phasg = 0. The two sinusoids are at 20 kHz and
in Fig. 3 with 20 kHz and 60 kHz sinusoids, with the fraction of 60 kHz 60 kHz, with a maximum amplitude of 200 mT.
described by the parameteof (15). The three curves for each model are
for different phase relationships between the sinusoids, as marked on the

plot and defined by in (15). 2 T T T T T T T T T T
— GSE
1.8f - - MSE ]
x Exper!mentl
~ We performed two sets of experiments, designed to exa ¢} D Exermenta |
ine experimentally the differences between the GSE and M! .
and determine which is more accurate. In the first expe 4f ’ ; & ® % 5 5 1

ment, we held phase fixed and scanned through a rangez, ,| i
relative amplitudes of the two sinusoidsBecause the zero-2 [~~~ =-----__
phase curve showed the most interesting theoretical behavg 1 R ]
dipping substantially before rising, and with significant differg 08 .o
ences between the GSE and MSE arising relatively early, '©
chose to perform the measurements with phiase0. There-  os} .
sults of this first experiment are shown in Fig. 5. As expecte
the MSE and the GSE both fit well for the pure fundament
(c = 0), and atc = 1 the MSE fits poorly, but the GSE fits ¢} _
well. The experimental data is about 5% highcat 0 com-
pared to either model, and also 5% above the GSE atthe ot 950 —160 -140 —120 —100 —80 60 40 =20 o0 20 40
endpoint. This could be attributed to batch-to-batch variatic.. Phase of third harmonic, , [degrees]
in the ferrite relative to the batch(es) measured to produce the
Steinmetz parameters in [1], inaccuracies in usinglozik Fig. 6. Comparison of loss predicted by the MSE and the GSE to experi-
values for effective volume and area, or to a systematic errorQﬁﬂ;ﬁ'ﬁ’:‘g;ﬁ'Vﬁtmﬁ(gja;ﬂgmjggfo‘}?f;ﬁgi %""; Qr?gcv‘i’t”h'ﬁg’sg'ated
in our measurements. However, the consistency of the 5% er-aried.
ror between the endpoints confirmed that the value dfiat
we used, 1.3, accurately described the loss behavior for pure
sinusoids. For the second set of experiments, we held the amplitudes
Throughout the range ef > 0.6, the GSE fits much better fixed and varied only phase. Looking at Fig. 4, we chose to do
than the MSE, which has an error of about 57% atdhe 1  this atc = 0.7 because the two models are dramatically dif-
endpoint. However inthe range @B < ¢ < 0.5, the GSE has ferent at that point, with the GSE predicting no variation with
significant error (up to 40%), while the MSE is more accuratphase, and the MSE predicting significant variation. Fig. 6
The maximum error of the GSE is smaller than the error of tlshows the results of that experiment. Although the loss does
MSE, and it is the better model over a wider range of valuehow some sensitivity to phase, the variation is only about 8%,
of ¢, but the middle range of harmonic amplitudes, where théhereas the MSE predicts a 30% variation. The GSE predic-
MSE is more accurate, may be important in a greater numhiem is more accurate both in predictitittle variation with
of applications. phase, and in predicting the magnitude of loss.

0.4 b
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C. Discussion example, in a diode, where voltage drop is not proportional to

Overall the GSE is more accurate than the MSE in mocuflrrent, rms current is not appropriate for calculating loss. If

situations, and is useful over a broader range of conditiorﬁ (_avoltage Qrop IS ap_proxmafcely constant, average current is
the appropriate effective amplitude.

In situations with a small-amplitude fundamental-frequency Effective frequencies are less commonly used than effective
component in the flux waveform, such as might be encoun- 9 y

: . ; plitudes, but can be useful for frequency-dependent wind-
tered in some integrated magnetic components, the MSE f%‘g losses [25], [26], [27]. Again, the calculation of effective

to provide useful predictions, and the GSE is clearly SuIOerI(#riaquency is specific to the loss mechanism, in this case eddy-

However, the GSE does have significant limitations. Firstl . 4
. ) . . ¥Urrent losses in conductors that are small compared to a skin
it depends on having set of Steinmetz parameters valid

the full range of frequencies of interest. As shown in Figs.%pth'

and 2, the use of different parameters may be necessary, toFor use in the Steinmetz equation, what is needed is an ef-

cover a wide range of frequencies in the flux waveform Spefgcta/ehfrequencyf e and an effective amplitudé., defined
trum. While an examination of the predominant frequenciéé‘C that
involved in producing loss can probably adequately guide the T
. — 1 dB
selection of parameters for that frequency range, a less ad-hoc P, = — k1
0

approach would be desirable. T dt

Also, we have found one range of harmonic amplitudes afglis s one equation with two unknowns, so we have the free-

phases where the GSE can have as much as 40% error in BB to define either one arbitrarily, and then simply solve (16)

dicting loss: the range where the third harmonic flux ampliy jefine the other. However, the result should ideally make
tude is near to, but smaller than the fundamental flux amp

d << h oh I ome sense in that the effective frequency should relate to the
tude (around).3 < ¢ < 0.5), with phase equal to zero. Be- 40 ot which things change in the waveform, and the effec-

cause the GSE relies only on the _Stelnmetz pa_rametersz amplitude should relate to the amplitude of the waveform
does not attempt to model hysteresis processes in a physic, B(tures

meaningful way, it is not surprising that it does have some lim-

o . . One possibility would be to use one of a number of stan-
itations. The deviation between the GSE and the MSE begi . A
aroundc = 0.15, which is also about where the BH trajec—@grd’ known measures for amplitude to compéite such as

tory begins to have minor loopsebause the flux waveform rms, peak-to-peak amplitude, or average absolute value of am-

has multiple peaks. This may indicate that hysteresis mod%"—tUde' However, this approach can lead to counter-intuitive

ing explicitly taking these minor loops intccount would be e:(f'rwéogie()f ggsit(l)\fe;;iq:ﬁﬂnn?%ﬁde the difference in loss in-
necessary to overcome this limitation of the GSE. P P P '

N . I uced by the two different waveforms shown in Fig. 7 would
Despite its limitations, we believe that the GSE is in mc.’%ave to be accounted for by differences in effective frequency,

cases the most useful tool available to magnetics de&grmce the peak-to-peak amplitude is the same. Yet these wave-

ers whp heed to predict Iosse§ in MnZn ferrites .W'.th NOSrms intuitively should have similar if not identical effective
sinusoidal flux waveforms. It gives accurate predictions f

a wide range of conditions, and provides a simple way (féequenmes.

e L i .2 . Next we consider the other conventional amplitude mea-
make these predictions requiring no material charactenzatlgn

beyond the Steinmetz parameters, which are often availa res, average absolu;e value and rms, which are special cases
k he general expression
from core manufacturers.

Future experimental work should expand the range of test 1
conditions, including more complete data with different pa- A 1 /T \B(t)|Pdt
rameter values for excitation by two harmonically-related si- T Jo
nusoids, testing of dc-bias effects, and testing of different core
materials. whereb = 1 for average absolute value ahd= 2 for rms.

The results will correlate well with an intuitive idea of am-
IV. EFFECTIVE FREQUENCY AND EFFECTIVE AMPLITUDE  plitude for any reasonable value lafbut, specifically for the

We define effective amplitude as an amplitude that may Sieinmetz eq_uatio_n, the calculations are greatly simplified and
substituted into a simple formula, originally intended for sinfore appealing with = (. Then, solving (16) forf. results
ple waveforms, to enable calculation of loss arising from ardP
trary waveforms. A familiar example of an effective amplitude T\ aB @ Bea
is rms amplitude, which, for current in a resistor, allows the fo— ks Jo [ 1B dt . (18)
use of the dc loss formul R to calculate loss for any wave- fOT | B(t)|Pdt
form, if the effective amplitude of current,,,s, is substituted
for I;.. The use of rms amplitude for this case is dependerithis is a reasonable, defensible choice. However, it ar-
on the specific loss mechanism in the resistor—that of Jogaably still gives results that do not properly correlBtewith
heating. Different loss mechanisms lead to different formamplitude-related changes arfd with rate changes. Con-
lations for the appropriate type of effective amplitude. Faider, for example, the waveforms in Fig. 8. The peak-to-peak

[e3

|B(t)|P~dt = kfeBS.  (16)

(17)
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! Alternatively, some other measure of magnitudeBarould

o8- ] be used in the denominator of (19), as is done in the “equiv-
o8- 8 alent frequency” used for the MSE (5), where peak-to-peak
04l 1 amplitude is used and = 2 [5]. In addition, (5) differs by

omitting the division byT", and omitting the:!” root. In the

‘ ‘ ‘ ‘ ‘ ‘ case of a single sinusoid, these two differences cancel each
° 10 0 0 o *0 o0 e other, and the result is an “equivalent frequency” equal to
the actual frequency, but, as discussed in Section I-A, for a
waveform consisting primarily of a harmonic, the “equivalent
frequency” ends up counterintuitively mismatching the actual

0.2r-

0.8

o8 il frequency of the main component of the waveform. The result
o4 ] is still useful in the MSE, but it is not the effective frequency
0ol : we wish to use here.

The most natural way to use (19) with (12) would be to
usea = b = « in this formulation. However, the net result
Fig. 7. Two waveformswith the same peak-to-peak amplitude, butthatind is @ more complicated Overa”- Calcu!atlon Bt and fe- than-

different loss, and intuitively should have the same effective frequency%) and_(l8) and the result is SUb]e_Ct to a_” the Ilmltatlons

inherent in whatever measure of amplitudgbis used in the
1 : : ; ; denominator of (19).

Given the limitations of the approaches discussed above, a
better measure of effective frequency is desired. The follow-
oF ] ing criteria are necessary (though perhaps not sufficient) in
order for a set of effective frequency and effective amplitude
measures to work for predicting loss and to overcome the ob-
0 0s 1 is 2 25 jections to other approaches discussed above:

I I I I I I
[ 100 200 300 400 500 600 700

0.5

-0.5 -

« The amplitude and frequency of any pure sinusoid should
match the conventional measures (or at least be proportional
osf 1 to them).
of « The loss calculated according to the Steinmetz equation
should match the loss calculatadcording to the GSE ( (8)
should be satisfied).
1 - . - L o « For waveforms such as those shown in Fig. 7, the difference
should be primarily in effective amplitude rather than effective
Fig. 8. Two waveforms that are expected to induce the same loss, and Iﬁequency' -
intuitively should have the samg and the samé, (the same effective ® or Wa\_/eforms such as tho_se shownin Flg. 8, both the effec-
frequency and effective amplitude). tive amplitude and the effective frequency should both match
between the two cases.
_ ) « An addition of dc bias may reduce effective frequency, or
amplitude is the same, and the waveforms change the saRg; increase effective amplitude, but it should not increase

amount at the same rate. It is merely the sequence that is difactive frequency or decrease effective amplitude.
ferent. Calculation of loss using (12) gives the same result

for either waveform, and it would make sense for the effective We propose two approaches tleaich satisfy most of these

amplitude and the effective frequency to also be constant &leria:

tween the two. But the formulae (17) and (18) give drastical

different results for each. Changing the valué of (17) does

not help. An effective amplitude can be defined as one-quarter of the
Another approach would be to use an established meastol integral of the flux change. For waveforms that do not

for effective frequency. In fact, the “equivalent frequencyhave multiple peaks, this corresponds to peak-to-peak ampli-

proposed in [5] is related to a well established measure of @fide.

fective frequency used in winding-loss calculations [25], [26],

I . i .
X. Effective parameters: first option

[27]. A generalized form of the effective frequency used in B o_ l/T dB gt (20)
[25], [26], [27] would be T4y |dt
(L fT E: |a dt) « Then effective frequency is defined by (16).
fo= 0 i (19)  This approach satisfies all the criteria except for dc bias.
o (LIT |B(t)|bdt)g The effective amplitude is not affected by bias, which does
TJo not directly pose a problem, but unfortunately it does means
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that effective frequency must increase with dc bias in ordgf M. Albach, T. Durbaum, and A. Brockmeyer, “Calculating core losses

to account for the increased losses observed in practice and

predicted by (12).

B. Effective parameters: second option

lows:

T | d’B
Jo |G= | dt

2w [ |4t

fe (21)

Then effective amplitude is defined by (16).

(5]

Alternatively, an effective frequency can be defined as fo[le-]

(71

(8]

The results of this approach satisfy all the criteria described

above, and may be used as a definition of effective frequencies

and amplitudes that allow the Steinmetz equation to delivé}

results identical to those of the GSE (12).

V. CONCLUSION

[10]

[11]

The generalized Steinmetz equation (GSE) (12) is a new

formulation that is fully consistent with the Steinmetz equ

tion for sinusoidal waveforms, but allows the calculation of
loss for any waveform. Experiments show that it is often mof&s]

accurate than the MSE nieid, particularly for waveforms

[14]

with small fundamental-frequency amplitudes, where exper-
imental results show the MSE can err by 57% where the G?E]

gives error of only 5%. Although thaccuracy of the GSE is

typically within 5%, errors as high as 40% can arise in some

situations. Nonetheless, we believe the GSE to be the md§i

practical method for calculating core loss with non-sinusoidal

waveforms in most high-frequency magnetics design wotk7]
because it requires only readily available sinusoidal loss data,
in the form of parameters for the Steinmetz equation charags;

terizing the material.
Althoughthe GSE (12) is the only result needed to calcul

loss for nonsinusoidal waveforms, it may also be elucidative
to describe a waveform in terms of an effective frequency and

an effective amplitude. Many standard approaches to defin

effective frequency and effective amplitude have been shown

to be inappropriate for describing loss in magnetic materia

131

Two new formulations for effective frequency and effective
amplitude are proposed, one of which (21) is found to meet &)
the criteria we propose for a good way to define those param-

eters in this application.
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